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Framework 

SDR 
DFC++ 

SDR Frameworks 

 Implementation of basic facilities and mechanisms 

 Definition of common interfaces and structures 

 

 

 More efficient SDR development 

SDR 
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Basic Facilities and Mechanisms 

 Allows focusing on development of signal processing algorithms 

 Reduces effort allocated in auxiliary and peripheral functionality 

 Provides a familiar environment for designers across projects 

 

 

 Acceleration of development processes 
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Common Interfaces and Structures 
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Common Interfaces and Structures 

 Improved reusability of components across different projects 

 Growing library of generic components aids future projects 

 Configuration interfaces simplify the design of generic components 

 

 

 Exploitation of cross-project synergies 
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Flexibility and Portability 
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Flexibility and Portability 

 Integrate more functionality within the framework 

 Simplify maintenance and live debugging 

 Cover different platforms with a unified approach 

 

 

 Leveraging of framework advantages 
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Framework Structure 

 Components are organized in autonomous modules 

 Modules have standardized interfaces 

 Processing chains are formed by connecting multiple modules 
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Modules 

 Every processing component is implemented as a module 

 Inputs and outputs provide data interfaces 

 Parameters provide configuration interfaces 

 Other modules can be added as submodules 
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Inputs and Outputs 

 Manage data exchange between modules 

 Multiple inputs can be connected to one output 

 Allow dynamic reconnecting at runtime 

 Provide data buffering and flow control 

 Reverse channel to signal request status 
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Parameters 

 Standardized interface for configuration and monitoring 

 Can be connected to shared parameters 

 Separation of internal and external value ensures consistency 
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Data Organization 

 Data organized in packets of variable 
size and type 

 Generic data packets for simple raw 
data transfer 

 Custom packet types can add arbitrary 
meta information 

 Packets are handled via reference 
pointers 
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Data Propagation 
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Packet Queue 

 Inputs have a Packet queue to store reference pointers 

 Ring buffer allows independent write and read access 

 Lock free operation via atomic fill level synchronization 

 Adjustable queue length to optimize for latency or performance 
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Flow Control 

 Flow control via two sided queue 
query procedure 

 Handles source, sink or throughput 
limited paths 

 Load balancing through dynamic 
suspension 
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Portability 

 Framework entirely written in C++ 

 No C++11, Boost or other large libraries required 

 Dependencies isolated on internal abstraction Layer 

 Low level utilities available to user modules 

? 
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Conclusion 

 Flexibility 

 Fully runtime dynamic routing of data paths 

 Adaptive flow control for variable data rates 

 Performance 

 Entire framework implemented in native C++ 

 Reference pointer based data distribution 

 Portability 

 No dependencies on large external libraries 

 Isolated platform dependent interface layer 
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QUESTIONS? 

 

Thank you for listening! 


