
© Fraunhofer IIS

DFC++ FRAMEWORK

A novel approach for flexible signal processing on embedded systems

Dominik Soller, dominik.soller@iis.fraunhofer.de

© Fraunhofer IIS 2

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 3

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 4

Framework

SDR
DFC++

SDR Frameworks

 Implementation of basic facilities and mechanisms

 Definition of common interfaces and structures

 More efficient SDR development

SDR

© Fraunhofer IIS 5

Basic Facilities and Mechanisms

Signal
Processing

Utility Functions
and Classes

Data
Distribution

Scheduling and
Synchronization

Debugging
Interfaces

Data Flow
Control

Monitoring
Facilities

Setup and
Configuration

Hardware
Abstraction

Data
Buffering

© Fraunhofer IIS 6

Basic Facilities and Mechanisms

 Allows focusing on development of signal processing algorithms

 Reduces effort allocated in auxiliary and peripheral functionality

 Provides a familiar environment for designers across projects

 Acceleration of development processes

© Fraunhofer IIS 7

Common Interfaces and Structures

Component

Project A

Component

Component

Project B

Component

Project C

Generic
Component

Generic
Component

Component
Generic

Component

Component

© Fraunhofer IIS 8

Common Interfaces and Structures

 Improved reusability of components across different projects

 Growing library of generic components aids future projects

 Configuration interfaces simplify the design of generic components

 Exploitation of cross-project synergies

© Fraunhofer IIS 9

Flexibility and Portability

Signal
Processing

Signal
Processing

Signal
Processing

SDR System

System
Task

System
Task

System
Task

SDR System

Signal
Processing

Signal
Processing

Signal
Processing

System
Task

System
Task

System
Task

Framework

© Fraunhofer IIS 10

Flexibility and Portability

 Integrate more functionality within the framework

 Simplify maintenance and live debugging

 Cover different platforms with a unified approach

 Leveraging of framework advantages

© Fraunhofer IIS 11

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 12

Framework Structure

 Components are organized in autonomous modules

 Modules have standardized interfaces

 Processing chains are formed by connecting multiple modules

Module Module

Module

Module Module

© Fraunhofer IIS 13

Modules

 Every processing component is implemented as a module

 Inputs and outputs provide data interfaces

 Parameters provide configuration interfaces

 Other modules can be added as submodules

Module Module

Input Output Submodule Processing

x = 1

Parameter

© Fraunhofer IIS 14

Inputs and Outputs

 Manage data exchange between modules

 Multiple inputs can be connected to one output

 Allow dynamic reconnecting at runtime

 Provide data buffering and flow control

 Reverse channel to signal request status

© Fraunhofer IIS 15

Parameters

 Standardized interface for configuration and monitoring

 Can be connected to shared parameters

 Separation of internal and external value ensures consistency

Internal
Value

Parameter

External
Value

store

load

Sharing

Configuration

Monitoring

© Fraunhofer IIS 16

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 17

Data Organization

 Data organized in packets of variable
size and type

 Generic data packets for simple raw
data transfer

 Custom packet types can add arbitrary
meta information

 Packets are handled via reference
pointers

Packet

Data

Size

Index

Custom 1

Custom n

G
e
n

e
ri

c
C

u
st

o
m

© Fraunhofer IIS 18

Data Propagation

Reference
Pointer

Output

Reference
Pointer

Input

Packet

Shared Memory

Reference
Pointer

Input

© Fraunhofer IIS 19

Packet Queue

 Inputs have a Packet queue to store reference pointers

 Ring buffer allows independent write and read access

 Lock free operation via atomic fill level synchronization

 Adjustable queue length to optimize for latency or performance

Input

Read
Index

Write
Index filled free

© Fraunhofer IIS 20

Flow Control

 Flow control via two sided queue
query procedure

 Handles source, sink or throughput
limited paths

 Load balancing through dynamic
suspension

Input(s)
filled?

Output(s)
free?

yes

yes

Read data from
input(s)

Process data

Write data to
output(s)

Sleep

no

no

© Fraunhofer IIS 21

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 22

Portability

 Framework entirely written in C++

 No C++11, Boost or other large libraries required

 Dependencies isolated on internal abstraction Layer

 Low level utilities available to user modules

?

© Fraunhofer IIS 23

AGENDA

1. Introduction

2. Framework Structure

3. Data Transport Mechanisms

4. Platform Support

5. Conclusion

© Fraunhofer IIS 24

Conclusion

 Flexibility

 Fully runtime dynamic routing of data paths

 Adaptive flow control for variable data rates

 Performance

 Entire framework implemented in native C++

 Reference pointer based data distribution

 Portability

 No dependencies on large external libraries

 Isolated platform dependent interface layer

© Fraunhofer IIS 25

QUESTIONS?

Thank you for listening!

